

Brion Hurley
Lean Six Sigma Master Black Belt
Business Performance Improvement LLC

Community Consulting Lead **Lean Portland**

brion@biz-pi.com www.biz-pi.com 321.271.5361

Six Sigma Primer Workshop

Housekeeping

Glasses
Bathrooms
Exit

- Volunteer group of Lean consultants working with nonprofits
- Provide networking events, happy hours, free workshops and volunteer opportunities
- <u>LeanPortland.com</u>

- Helping businesses and organizations achieve "triple bottom line" performance using Lean and Six Sigma
- Classes, workshops, consulting and mentoring
- BIZ-PI.com

- Nonprofit social enterprise innovation lab and co-working space since 2004
- Assist with capital access that is compatible for businesses and the communities they serve
- HatchTheFuture.org

Agenda

- Intros
- History
- Variation
- Sigma Levels
- DMAIC
- Data
- Gage R&R
- Gage R&R Exercise
- SPC
- Capability

- Minitab/Excel
- Charts and Graphs
- ANOVA
- Electricity Reduction Project
- Regression
- DOE
- DOE Exercise
- Belt System
- Examples (Suppliers, Healthcare)
- Q&A and Next Steps

0:10

Your name?

Company?

Your position?

Why are you here?

a brief history...

Walter Shewhart

"Father of SPC", PDCA Engineer, statistician Bell Labs, Western Electric 1891-1967 (1924)

W. Edwards Deming

Engineer, statistician & consultant Championed work of Shewhart in US and Japan, key connection to Lean and Six Sigma 1900-1993 (1950)

Bill Smith

"Father of Six Sigma" Engineer, Motorola 1929-1993 (1986)

Jack Welch

CEO, General Electric Six Sigma culture 1981-2001 (1995)

Does variation matter? Not black and white

What is Six Sigma?

Six Sigma Golfing

https://www.youtube.com
/watch?v=AUP50Ahk5ol

Sigma Levels

Sigma Level	Defects Per Million	Yield	Cost (% Sales)	
6.0	3.4	99.99966%	Very Low (< 1%)	
5.5	32	99.9968%		
5.0	233	99.977%	Low (1-5%)	
4.5	1,350	99.87%		
What sigma level are your processes?				
3.5	22,750	97.7%		
3.0	66,807	93.3%	High (10-20%)	
2.5	158,655	84.1%		
2.0	308,537	69.1%	Very High (20-30%)	
1.5	500,000	50.0%		
1.0	691,462	30.9%	Excessive (> 30%)	

DMAIC

- Successful methodology that uses data to confirm extent of problem, get to root cause, link solutions to causes, and maintain improvements
- Increases chance of project success than not following model

All about the data!

- Data is at the heart of Six Sigma
- Without data, there can be no assurance of improvement
 - Just educated guessing
 - Not a reliable method for improving
- Focus is on separating true improvement from random chance (luck)
- Take time to gather data, to help support and sell others on your ideas
- Data takes the emotion out of a situation
- Data can be incorrect or misleading, so ensure data collection methods are trusted
 - "Garbage in, garbage out"

The Big 3

Gage Repeatability and Reproducibility (R&R)

Statistical Process Control (SPC)

Capability Analysis

Measured Value = Actual Value + Measurement Error

Gage R&R

- R&R stands for Repeatability and Reproducibility
 - Repeatability
 - The variation in measurements taken by a single person or instrument on the same item and under the same conditions
 - Reproducibility
 - The variation induced when different operators, instruments, or laboratories measure the same or replicate items

Repeatability

REPEATABLE

0.0036

0.0037

0.0035

0.0036

0.0036

0.0037

0.0036

0.0035

GOOD

NOT REPEATABLE

0.0046

0.0057

0.0033

0.0039

0.0050

0.0030

0.0036

0.0055

BAD

Reproducibility

REPRODUCIBLE

PERSON #1 PERSON #2

1634.

0.0046	0.0048
0.0057	0.0050
0.0032	0.0034
0.0039	0.0051
0.0050	0.0037
0.0030	0.0032
0.0036	0.0046
0.0056	0.0044

AVERAGE AVERAGE 0.0043

NOT REPRODUCIBLE

PERSON #1 PERSON #2

0.0039 0.0052	0.0029 0.0047
0.0039	0.0029
0.0034	0.0024
0.0045	0.0035
0.0033	0.0023
0.0031	0.0021
0.0052	0.0022
0.0043	0.0034
֡	0.0043 0.0052 0.0031 0.0033

AVERAGE AVERAGE **0.0041 0.0029**

Exercise

Measure how well you can estimate 10 seconds

- 1. Find a partner
- Partner says "start" and starts stopwatch on your phone, tell partner "stop" when you think 10 seconds has elapsed. Make sure partner cannot see their results and don't provide feedback
- 3. **Repeat** 6 times, then **reproduce** the study with the other partner
- 4. Record all results, estimate average and range (max and min) using handout
- 5. Who is more consistent? Who averages closer to 10 seconds? Who went first vs second?

Fill out form

	Name #1	Name #2	Name #3
	Sara	Bob	Ivan
Obs			
1	11.3	5.3	8.6
2	10.9	7.8	10.9
3	11.2	6.4	9.5
4	11.8	7.2	10,4
5	10.3	8.2	11.5
6	11.3	5.9	9.6
Avg	11.13	6.80	10.08
Range (Max - Min)	1.5	2.9	2.9
Telulocat	100	<u>.</u>	-
ccuracy: Which po rerage closer to 1		Ivan	
recision: Which pe	erson has a smaller		

Attribute Gage R&R: Can you taste the difference?

http://leansixsigmaenvironment.org/index.php/does-bottled-water-actually-taste-better-attribute-agreement-analysis/

Results of Blind Taste Test

Cup#	Actual	Tester #1	Tester #2	Tester #3	% Correct
1	Generic	Generic	Tap	Fiji	33%
2	Тар	Zephyrhills	Generic	Тар	33%
3	Fiji	Fiji	Fiji	Generic	67%
4	Zephyrhills	Fiji		Generic	0%
5	Fiji	Tap	Tap\	Zephyrhills	0%
6	Тар	Z Pr VIIS	Rephyrhi	Тар	33%
7	Generic	W W	Fiii	Zephyrhills	0%
8	Zephyrhills		Generic	Fiji	0%
9	Тар	Tà	Тар	Zephyrhills	67%
10	Generic	Gene	Generic	Generic	100%
11	Fiji	Generic	Zephyrhills	Zephyrhills	0%
12	Zephyrhills	Fiji	Fiji	Zephyrhills	33%
Overall	100 100 100	42% (4)	33% (3)	42% (4)	8% (1)

Statistical Process Control (SPC)

Now when do you take out the pitcher?

Case Study: City of Tyler

- Wastewater department stabilized magnesium hydroxide dosages and cut costs with confidence from statistical analysis showing that they will still comply with state regulations, resulting in \$80K in savings to date.
- They also established standard operating procedures, which ensured the continued efficiency of their process and savings for the city and taxpayers.

Capability

- pH level for wastewater discharge
- 4% risk of discharge violation

Excel and Minitab

Excel

- Easier to use
- Easier to access
- Easier to share
- Flexible, multi-purposes
- Low cost or free

Minitab

- Better charts and graphs
- Better statistical analysis

Other packages available: SigmaXL, QI Macros, JMP, R, etc.

Minitab Charts and Graphs

Analysis of Variance (ANOVA): Is there a difference?

Electricity Reduction Project

- Define: Company is spending \$4M a year in electricity
- Measure
- Analyze
- Improve
- Control

Electricity Reduction Project

- Define: Company is spending \$4M a year in electricity
- Measure: Utility bill data, but no detailed data by area
 - Gathered data by hand over holidays, input from maintenance staff
- Analyze:
- Improve
- Control

High base load usage, where is that coming from?

Data Collection results

- HVAC is one of the highest drivers of electricity
- Matches feedback from maintenance workers
- Would be part of base load usage (runs 24/7)

Regression Analysis

Summary of kWh by month

Regression Analysis

- Avg High Temp explains 50% of variation
- Can we do better?

Other Factors

- Avg High Temp
- Spares Output
- Employee Count
- Final ProductOutput
- Working Days
- Employees

KWH Usage = - 740670 + 6500 Avg High Temp - 33.6 Spares Output Qty + 647 Employees

Electricity Reduction Project

- Define: Company is spending \$4M a year in electricity
- Measure: Utility bill data, but no detailed data by area
 - o Gathered data by hand over holidays, input from maintenance staff, statistical analysis
- Analyze: Perform statistical analysis to identify opportunities
 - Focused on HVAC, determined building being heated and cooled 24/7
- Improve
- Control

Electricity Reduction Project

- Define: Company is spending \$4M a year in electricity
- Measure: Utility bill data, but no detailed data by area
 - o Gathered data by hand over holidays, input from maintenance staff, statistical analysis
- Analyze: Perform statistical analysis to identify opportunities
 - Focused on HVAC, determined building being heated and cooled 24/7
- Improve: Pilot project in one building with shut off
 - Showed significant savings, developed plan to roll out to entire building
- Control

Electricity Reduction Project

- Define: Company is spending \$4M a year in electricity
- Measure: Utility bill data, but no detailed data by area
 - Gathered data by hand over holidays, input from maintenance staff, statistical analysis
- Analyze: Perform statistical analysis to identify opportunities
 - Focused on HVAC, determined building being heated and cooled 24/7
- Improve: Pilot project in one building with shut off
 - Showed significant savings, developed plan to roll out to entire building
- Control: Override buttons added and tracked
 - Savings resulted in \$300K per year, 3 million kWh

Design of Experiments (DOE)

A/B Split Testing

- Works for testing two scenarios
- Ex: Facebook Ad Color: Red vs Blue

What if more complicated?

- Color: Red vs Blue
- Image: Nature vs Business
- Message: Shocking vs Inspirational
- Title: Price included or Not Included

Circle and Hand DOE Exercise

- For each trial, use right or left hand to go back and forth as fast as you can between the two circles, and place a mark inside each circle with marker
- One complete cycle requires both marks to be within the circle
- You will have 15 seconds per trial
- Count the number of complete cycles and record on the data sheet

CORRECT = One Complete Cycle

INCORRECT

INCORRECT

Fill in Summary Chart

- Were you consistent?
- Which is more impactful, hand or circle size?

Belt System

- Based on martial arts belt system
 - White Belt This class
 - Yellow Belt Basic tools + White Belt
 - Green Belt Advanced tools (1-2 weeks)
 - Black Belt More advanced tools (4-5 weeks)
 - Master Black Belt Even more advanced tools + deployment planning (6-10 weeks)
- Level increase also requires project experience
- Pros and cons of certification

Supplier Customer Analysis Project

Saved \$500K per year!

Healthcare Example

Patient	Pro Times		INR	
	Lab A	Lab B	Lab A	Lab B
1	20.27	20.47	2.78	3.17
2	17.50	17.47	2.10	2.32
3	20.67	20.27	2.89	3.11
4	15.67	15.50	1.69	1.83
5	20.80	20.43	2.92	3.16
6	13.47	13.57	1.27	1.41
7	24.10	23.97	3.88	4.32
8	17.47	17.17	2.09	2.24
9	21.07	20.90	2.99	3.30
10	22.17	21.70	3.30	3.55
Avg	19.32	19.14	2.59	2.84

Healthcare Example

INR Results for Patient A

Lean vs Six Sigma

- Start with Lean, easier to get everyone involved in improvements
 - Some people are scared off by numbers/analysis
 - Everyone can identify and eliminate waste (non-value added) or increase value added work
- DMAIC structure works well for larger projects (Lean and Six Sigma)
- Six Sigma tools ideal for:
 - Complex or difficult problems
 - Processes with a lot of data and variation
 - After you've tried easier improvements and still not good enough
 - Risk mitigation and prevention
 - Need very high quality performance (3 sigma or greater)

Other Ideas?

Gage R&R

 Does your data match your customers? Is data being collected consistently? Do workers make the same decisions and categorize issues the same?

SPC

 Trend expenses, sales, website traffic, email/call volume, defect rates, on-time delivery performance, supplier data, website speed, employee turnover or absenteeism rate

Capability

 Forecast accuracy goals, customer response time, how likely will we meet our goal? Do we have enough staff to meet demand?

ANOVA/Regression

 Quote prediction, hiring success factors, employee time differences, electricity usage, compare two processes or machines to each other, seasonal modeling, staffing to customer demand, event attendance/food estimation

DOE

Online ad and email click-thrus, worker performance, process optimization, complex processes

How can you apply Six Sigma?

Resources

- Six Sigma Training and Certification: <u>6sigma.US</u> (Nationwide locations)
 - All belt levels available, plus Lean, and Design for Six Sigma
- Six Sigma Certification: <u>ASQ.org</u>
 - Study guides for exam: Quality Council of Indiana

Eventbrite

Q&A Plus / Delta

Brion Hurley

Lean Six Sigma Master Black Belt **Business Performance Improvement LLC**

Community Consulting Lead

Lean Portland

brion@biz-pi.com www.biz-pi.com 321.271.5361

Backup

SPC at Honda

https://www.youtube.com/watch?v=Sdj-8ZBYYmo

